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Abstract 
In this paper, we compare the eighth order rational numerical integrator (RNI8) with Adomian 
decomposition method by solving a linear stiff differential system. This paper presents the 
numerical results to compare and show the performance of the methods using adaptive step-size 
control. 
 
Keywords: stiff differential equations, rational numerical integrator, eighth order, adomian 
decomposition method. 
 
1. INTRODUCTION 
 
    We consider the initial value problem (IVP) 

y' = f(x, y), y(x0) = y0; y, f  RM and x  [a, b], a, b  R    (1) 
whose solution may contain singularities. It is assumed that f(x, y) satisfy the Lipschitz 
condition. 
Definition 1.1 Stiff IVP 

 A system of IVP of the form (1) is said to be stiff if the eigen value i of the Jacobian 
matrix f

y

 
  

 at every integration point x have negative real parts and differ greatly in magnitude. 

 Also, the eigen values t satisfy the following conditions: 
(i) Re(t) < 0, t = 1,2, .... , m and 

(ii) 
max | |

min | |
t t

t t




= S > 1; S is the stiffness ratio. 

 
Although the classical Runge-Kutta methods of higher order and implicit predictor-

corrector methods are used for solving stiff equations they become very inefficient since the step 
size is controlled by stability requirement rather than accuracy requirement. They are based on 
the approximation of the solution by a polynomial, an approach that is too expensive when high 
accuracy is required [5-6]. 
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Though most of the implicit methods work better in producing results for stiff problems than 
that of the explicit methods, some of the explicit rational non-linear schemes were proven to be 
efficient.The rational nonlinear schemes for the numerical solution of Eq.(1) are given in 
Lambert and Shaw [10], Luke et al [11] and Fatunla [7] ,Fatunla and Aashikpelokai [8], Ikhile 
[9], Otunta and Ikhile [12-13] and Otunta and Nwachukwu [15].Otunta and Nwachukwu [14] 
constructed schemes of order three, four, five, and six, seven respectively. Ponnammal and Prabu 
developed an eighth order rational numerical integrator [15] which is referred here as RNI8.  

 
A power series method, called the Adomian decomposition method (ADM), can be used 

to derive an exact solution to a specific linear stiff system of IVPs [1-4]. The ADM gives an 
analytical solution in terms of a rapidly convergent infinite power series with easily calculatable 
terms. ADM and examples were discussed in [1-4].  
 The aim of this paper is to compare the numerical solutions of RNI8 [15] with ADM in a 
linear stiff system. 
 
2 EIGHTH ORDER RATIONAL NUMERICAL INTEGRATOR (RNI8) 
      Otunta and Ikhile [14] considered the following rational function approximation for the IVP 
Eq.(1). 

                𝑦(𝑥) = 𝐴 +
௫௉ೖషభ(௫)

ଵା∑ ௕ೕ௫ೕ಼
ೕసభ

, 𝑘 > 0,                                               (2) 

where                    𝑃௞(𝑥) = ∑ 𝑎௝𝑥௝ ,     𝑘 ≥ 1௞
௝ୀ଴                                                       (3) 

We therefore consider the one-step scheme 

𝑦௡ାଵ = 𝐴 +
௫೙శభ௉ೖషభ(௫೙శభ)

ଵା∑ ௕ೕ௫೙శభ
ೕೖ

ೕసభ

, 𝑘 ≥ 1                            (4) 

Thus, we interpolate the theoretical solution of Eq. (1) by 

 y(x) = 
2 3 4

0 1 2 3 4
2 3 4

1 2 3 4

a + a x + a x + a x + a x

1+ b x + b x + b x + b x
         (5) 

The resultant one step scheme is given by 

 yn+1 = 
2 3 4

0 1 n+1 2 n+1 3 n+1 4 n+1
2 3 4

1 n+1 2 n+1 3 n+1 4 n+1

a + a x + a x + a x + a x

1+ b x + b x + b x + b x
        (6) 

We write Eq.(6) as, 

yn+1 =  
r

4
2 3 4 r j

0 1 n+1 2 n+1 3 n+1 4 n+1 j n+1
r=1 j=1

a + a x + a x + a x + a x 1+ (-1) b x
  

  
   

       (7) 

and superimposing it on 

 y(xn+1) = 
j (j)

n

j=0

h y

j!



 ;  (a)
ny  = ya ,         (8) 

we get, 

 2 3 4
0 1 n+1 2 n+1 3 n+1 4 n+1a + a x + a x + a x + a x  =  2 3 4

1 n+1 2 n+1 3 n+1 4 n+11+ b x + b x + b x + b x  

 
2 II 3 III 4 IV 5 V 6 VI 7 VII 8 VIII

I 9n n n n n n n
n n

h y h y h y h y h y h y h y
y + hy + + + + + + + + 0(h )

2! 3! 4! 5! 6! 7! 8!

 
 
 

 

               (9) 
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We obtain the method parameters from (9) as : 
 a0 = yn           (10) 

 a1 = 
I
n

n 1
n+1

hy
y b +

x
         (11) 

 a2 = 
I 2 II
n n

n 2 1 2
n+1 n+1

hy h y
y b + b +

x 2!x
        (12) 

 a3 = 
I 2 II 3 III
n n n

n 3 2 12 3
n+1 n+1 n+1

hy h y h y
y b + b + b +

x 2!x 3!x
      (13) 

 a4 = 
I 2 II 3 III 4 IV
n n n n

n 4 3 2 12 3 4
n+1 n+1 n+1 n+1

hy h y h y h y
y b + b + b + b +

x 2!x 3!x 4!x
    (14) 

 
 We arrive at a system of simultaneous equations from Eq.(10) – Eq.(14) where for each 

positive integer m, the term 
௛೘௬೙

೘

௠!௫೙శభ
೘   is a real number. The system,in matrix form, is as shown 

below: 

 

4 IV 3 III 2 II
In n n
n3 2

n+1 n+1 n+1

5 V 4 IV 3 III 2 II
n n n n

3 2
n+1 n+1 n+1

6 VI 5 V 4 IV 3 III
n n n n

3 2
n+1 n+1 n+1

7 VII 6 VI 5 V 4 IV
n n n n
3 2
n+1 n+1 n+1

h y h y h y
hy

4!x 3!x 2!x

h y h y h y h y

5!x 4!x 3!x 2!

h y h y h y h y

6!x 5!x 4!x 3!

h y h y h y h y

7!x 6!x 5!x 4!

 
 
 
 
 






 

1

2

3

4

b

b
  

b

b

 
 

  
  
  
  




 = 

5 V
n

4
n+1

6 VI
n

4
n+1

7 VII
n

4
n+1

8 VIII
n

4
n+1

-h y

5!x

-h y

6!x

-h y

7!x

-h y

8!x

 
 
 
 
 
 
 
 
 
 
 
  

                            (15) 

 
This is of the form AX = B, solving this to obtain b1,b2,b3,b4 as in [15] so that we get, 
 

            b1 = 
n+1

hV

20Ux
          (16) 

 b2 = 
2

2
n+1

h S

30Ux
          (17) 

 b3 = 
௛యௐ

ଵଶ଴௎௫೙శభ
య           (18) 

 b4 = 
4

4
n+1

h R

60Ux
          (19) 

 a1 = 
௛[௏௬೙ାଶ଴௎௬೙

಺ ]

ଶ଴௎௫೙
                    (20) 

 a2 = 
௛మ[ଶௌ௬೙ାଷ௏௬೙

಺ ାଷ଴௎௬೙
಺಺]

଺଴௎௫೙శభ
మ                    (21) 
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 a3 =
௛య[ௐ௬೙ାସௌ௬೙

಺ ାଷ௏௬೙
಺಺ାଶ଴௬೙

಺಺಺]

ଵଶ଴௎௫೙శభ
య        (22) 

 a4 = 
௛ర[ଶோ௬೙ାௐ௬೙

಺ ାଶௌ௬೙
಺಺ାହ௎௬೙

಺ೇ]

ଵଶ଴௎௫೙శభ
ర        (23) 

and 

 yn+1 =
ଵଶ଴௎௬೙ା଺௛஺ାଶ మ஻ା௛య஼ା஽௛ర

ଵଶ଴௎ା଺௛௏ାସ మௌା௛యௐାଶ௛రோ
       (24) 

where 
 A = 𝑉𝑦௡ + 20𝑈𝑦௡

ூ   
 B =  2𝑆𝑦௡ + 3𝑉𝑦௡

ூ + 30𝑈𝑦௡
ூூ 

 C = 𝑊𝑦௡ + 4𝑆𝑦௡
ூ + 3𝑉𝑦௡

ூூ + 20𝑦௡
ூூூ 

 D =  2R𝑦௡ + 𝑊𝑦௡
ூ + 2𝑆𝑦௡

ூூ + 𝑉𝑦௡
ூூூ + 5𝑈𝑦௡

ூ௏  
 
and U,V,W,S,R are derived as in [15] and Eq.(24) gives the desired rational numerical integrator. 
The L-stability, consistence and convergence were proved for this method and the Local 
Truncation Error is obtained in [15]. 
 
3. ADOMIAN DECOMPOSITION METHOD 
 

Let us consider the system of ordinary differential equation 
'

1 2( , ,..., ) ,i i n iy f y y y g   i = 1,2,...,m.      (25) 

where if are nonlinear  functions, ig are known functions, and we are seeking the solution iy

satisfying (15). We assume that for every ig , Eq. (25) has one and only one solution.

 Applying the decomposition method as in [1-4], Eq. (25) can be written as  
 1 2( , ,..., ) ,i i n iLy N y y y g   i = 1,2,...,m.     (26) 

where 
d

L
dt

 is the linear operator and 1 2( , ,..., )i nN y y y = fi(y1,y2,...yn)are the nonlinear operators. 

Operating on both sides of Eq. (26) with the inverse operator of L (namely L-1[.]dt) gives  
 1 1

2(0) ( , ,..., ) .i i i i n iy y L N y y y L g         (27) 

The Adomian technique consists of approximating the solution of Eq. (27) as an infinite series.  

 
0

, ,i i
n

y y n




  i = 1,2, ..., m       (28) 

and decomposing the nonlinear operator iN as  

 1 2
0

( , ,..., ) , ,i n i
n

N y y y A n




  i = 1,2, ..., m,                (29) 

where Ai,n are polynomials (called Adomian’s polynomials) of y0, ..., yn [1-3] given by 

 ,
0 0

1 ''
,

!
i

i n i in
i

d
A N y

n d







 

  
   

  
   n = 0, 1, 2, .... 

The series ,0 i nn
y



 and 
,0 i nn

A


 are convergent as given in [1], Substituting Eq.(28) and Eq. 

(29) into Eq.(27) yields 
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 1 1
, ,

0 0

(0) .i n i i n i
n n

y y L A L g
 

 

 

     

Thus, we can arrive at the method 
 1

,0 (0) ,i i iy y L g   

 1
, 1 , 0( ,..., ),i n i n ny L A y y
   i = 1,2, ...,   n = 0, 1, 2, ....              (30) 

Thus all components of yi can be calculated once the Ai,n are given. We then define the n-term 

approximant to the solution iy by 
1

, ,0
[ ]

n

i n i i kk
y y 


 with ,lim [ ] .n i n i iy y   

The convergence is achieved by carrying out an efficient step-size control. A subinterval 
is determined where the condition , 1 ,2 2i n i ny x y  holds for n = 0,1, ..., k, i = 1,2,..., m where  

0< <1 is a constant and k is the maximum order of the approximant used in the computation 
and m the number of equation [4].  
 
4. NUMERICAL EXPERIMENT 
 
Consider now the linear initial value problem [4] 
 '

1 1 2 320 0.25 19.75 ,y y y y     1(0) 1,y   

 '
2 1 2 320 20.25 0.25 ,y y y y     2(0) 1,y      (31) 

 '
3 1 2 320 19.75 0.25 ,y y y y     3(0) 1.y    

 
The exact solution of (31) is  
 

       0.5 20
1

1
cos 20 sin 20 ,

2
t t

Ey t e e t t       

       0.5 20
2

1
cos 20 sin 20 ,

2
t t

Ey t e e t t        

       0.5 20
3

1
cos 20 sin 20

2
t t

Ey t e e t t        

 
Appling the decomposition method as in [1-4], Eq. (31) can be written as  
 
 1 1 2 320 0.25 19.75 ,Ly y y y    

 2 1 2 320 20.25 0.25 ,Ly y y y         (32) 

 3 1 2 320 19.75 0.25 ,Ly y y y    

where 
d

L
dt

  is the linear operator. Operating on both sides of Eq. (32) with the inverse operator 

of L (namely    1

0
. .

t
L dt dt   ) gives 

   1 1 1
1 1 1 2 30 20 0.25 19.75 ,y y L y L y L y       

   1 1 1
2 2 1 2 30 20 20.25 0.25 ,y y L y L y L y                         (33) 

   1 1 1
3 3 1 2 30 20 19.75 0.25 .y y L y L y L y       
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Therefore, the iterations are  
 1,0 2,0 3,01, 0, 1,y y y     

 1 1 1
1, 1 1, 2, 3,20 0.25 19.75 ,n n n ny L y L y L y  

      

 1 1 1
2, 1 1, 2, 3,20 20.25 0.25 ,n n n ny L y L y L y  

     

 1 1 1
3, 1 1, 2, 3,20 19.75 0.25 0,1, 2...n n n ny L y L y L y n  

      

which is the desired method. 
The problem in Eq.(30) is solved using RNI8 method given by Eq.(24) and ADM given by 
Eq.(30). The problem has been integrated on the interval [0, 2] and the results using MATLAB 
are presented in Table 1 in the interval [1, 2] for adaptive step size h. The errors have been 
defined as the maximum of the absolute errors on the nodal points in the integration interval. It is 
observed from Table 1 that RNI8 acts as a better method in this linear example. 
 
Table 1 Comparison of Absolute errors of RNI8 with Adomian decomposition of Example 1 
 

 
t 

|Error|  in RNI8 
y1 

 

|Error| in 
Adomian 

y1 

 

|Error| in RNI8 
y2 

 

|Error| in 
Adomian 

y2 

 

|Error|  in RNI8 
y3 

 

|Error| in 
Adomian 

y3 

 
1 3.7918 × 10ିଵଵ 4.2895 × 10ିଵଵ 2.5021 × 10ିଵଵ 4.9101 × 10ିଵଵ 4.1681 × 10ିଵ଴ 5.2013 × 10ିଽ 
2 8.5813 × 10ିଵ଴ 8.6142 × 10ିଵ଴ 8.5211 × 10ିଵ଴ 8.6191 × 10ିଵ଴ 7.7110 × 10ିଵ଴ 8.6005 × 10ିଵ଴ 

 
5. CONCLUSION 
 
We have made a comparative study between RNI8 and ADM to solve a nonlinear stiff initial 
value system in this paper. It is observed from the numerical results in Table 1 that RNI8 is 
superior in this system in terms of accuracy. 
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